What Is A Data Pipeline?

Data pipeline works by a series of actions or steps of processing data. The process involves the ingestion of data from different sources then moving them to a destination in step by step manner. In each step, the output is formulated and goes on until completed. 

How does it work? As its name suggests, it works like how a pipeline runs. It carries data from sources then delivers it to a destination. It allows disparate data to be automatically processed, then delivered and centralized into a data system.  

The key elements of a data pipeline can be categorized into three: an origin or a source, a step-by-step procedure or flow of data, and a destination.

Components of Data Pipeline

  • Origin or Source. It is the point of origin of the data that will be processed. Data pipeline gets data from disparate sources, including SaaS applications data, API applications, a webhook, social media, IoT devices, and storage systems such as data warehouses of companies reports and analytics.
  • Dataflow.  It involves data movement from sources to the destination. It includes the various changes that happened along the process and the storages of data it went through. ETL (extract, transform, load) is one of the ways to a data flow.  It is a specific data pipeline type.

Extract- is the process of ingestion of data from the sources.

Transform- refers to the preparation of data for analysis such as sorting, verification validation, and so on.

Load- refers to the final output loading to the destination.

  • Destination.  It is the final place where the data will be stored, such as a data warehouse, data lake, and the like.
  • Processing. This involves taking actions and steps while the data pipeline is being done, from the ingestion of data until delivered to the destination.
  • Workflow. It is defined by the order of actions and their dependencies in the process.
  • Monitoring. Ensuring the accuracy and efficiency of the process is relevant to data pipeline ad network congestion, and failure may occur.

Organizations rely a lot on data; there as time goes on, their data keeps on filing and increasing the demand of efficiency requirements. Hence, data transfer and transactions happen from time to time. So, in order to keep up with the volume of data, data pipeline tools are needed.

What is a Big Data Pipeline?

The increase of data regularly increases, therefore as a countermeasure, big data adaptation was developed. As its name suggests, big data is a data pipeline that works on a massive volume of information. It functions the same as the smaller ones but on a bigger scale. Extracting, transforming, and loading (ETL) of data can be done on a large scale of information in this pipeline, which can be used on real-time reporting, alerting, and predictive analysis.

The same with lots of data architecture components, in order to process huge data scale innovation of data pipeline, these are necessary. Production of data with the help of a big data pipeline becomes much more flexible than the small ones. Hence, to accommodate a tremendous amount of data is how it came to life. It can process streams, a batch of data, and many more. Varying formats of data can be operated like structured one, unstructured and semi-structured information unlike the regular. But scalability of a data pipeline based on an organization’s necessity is very significant to be an efficient big data pipeline. The absence of a scalable property of a pipeline could affect the variable of time for the system to complete the process.

There are industries or organizations that require big data pipelines more than the others. Some of those are the following;

  • Finance and banking institutions analyze big data for the improvement of services
  • Healthcare organizations that work on a variety of data related to health
  • Educational Institutions which work on many student information
  • Government organizations employ big data pipeline on a large scale as they cover data analysis of various data that concern government affairs
  • Manufacturing companies use pipelines on a huge scale to streamline their transactions
  • Communication, media, and entertainment organizations apply big data in real-time updates, improvement of connection and video streaming quality, and many more
  • Huge corporate businesses that evaluate and analyze a large amount of information. They use a big data pipeline to streamline company transactions, processes, and productions

Considerations in Data Pipeline Architecture

Architectures of data pipelines require a lot of consideration before building one. Some of these can be answered by the following questions:

  • What are the pipelines for? What is the purpose of it? Why would you need to create one? What accomplishment do you want to achieve with it?
  • What amount of data do you wish? What data will you work on? Is it streaming, structured or not?
  • How will the pipeline function? What will be the scope of the data that will be processed? Will it be used for gathering reports, demographic files, general education information, and so forth.

What is Data Pipeline Architecture?

 It is the strategy of designing a data pipeline that ingests, processes, and delivers data to a destination system for a specific result.

Data Pipeline Architecture examples

Batch-Based Data Pipeline

In this example, it involves processing a batch of data that has been stored, such as company revenues for a month or a year. This process does not need real-time analytics as it processes volumes of data stored.  Use of point-of-sale (POS) system, an application source generating huge data points to be carried or transferred to a database or data warehouse.

Streaming Data Pipeline

This example, unlike the first one, involves real-time analytics operations. Data coming from the point-of-sale system is being processed while being prompted. Besides carrying outputs back to the POS system, streams processing machine delivers products from the pipeline to marketing apps, data storage, CRM’s, and the likes.

Lambda Architecture

This data pipeline is a combination of batch-based and streaming data pipelines. Lambda Architecture can do both stored or real-time data analysis. Big data entities often use this example.

Leave a comment

Your email address will not be published. Required fields are marked *

Popular Post

Recent Post

Top 7 Tips to Speed Up a Slow iPhone

By TechCommuters / December 29, 2017

Apple devices tend to perform seamless no matter you are on Mac, iPad, desktop or iPhone. These systems are designed meticulously to perform tasks in an effortless manner. Further, you can find all useful features built-in on your Apple device to deal with all performance issues. It helps you manage over occupied storage space, helps […]

Top 7 Tips to Speed Up Android Performance

By TechCommuters / December 27, 2017

  Android device rallied the Microsoft Windows platform but for mobile devices. Similar to Windows platform which has huge customer base due to its easy and user-friendly experience, Android also enjoys the same comfort from users around the world. Due to open source platform, Android offers tremendous features to users with greater control to tweak […]

How to Speed Up Windows Performance?

By TechCommuters / December 5, 2017

Microsoft Windows was invented to help users perform various virtual tasks seamlessly. This simple yet powerful platform offers you numerous features & functionalities to perform almost any task. In fact, it has covered a long journey from the first version of Windows 1.0 back in 1985. Today, Windows 10 offers you a potent platform to […]

Speed Up Your Mac with These Top 10 Mac Troubleshooting Tips

By TechCommuters / November 15, 2017

Apple offers some potent computing machines in the form of Mac. Mac offers numerous useful features & functionalities for seamless performance. You can invest into these machines for improved user experience and power packed features. Despite having a reputation of powerful and potent machines still, Macs are not immune to some basic computer problems. These […]